翻訳と辞書
Words near each other
・ Fundin
・ Fundin (lake)
・ Funding
・ Funding Act of 1790
・ Funding Act of 1870
・ Funding bias
・ Funding Circle
・ Funding Council
・ Funding Evil
・ Fundamental Epistle
・ Fundamental frequency
・ Fundamental Fysiks Group
・ Fundamental group
・ Fundamental group scheme
・ Fundamental human needs
Fundamental increment lemma
・ Fundamental interaction
・ Fundamental interpersonal relations orientation
・ Fundamental justice
・ Fundamental law
・ Fundamental Law of Education
・ Fundamental Law of Vatican City State
・ Fundamental Laws of England
・ Fundamental Laws of the Realm
・ Fundamental lemma (Langlands program)
・ Fundamental lemma of calculus of variations
・ Fundamental lemma of sieve theory
・ Fundamental Love
・ Fundamental matrix
・ Fundamental matrix (computer vision)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Fundamental increment lemma : ウィキペディア英語版
Fundamental increment lemma
In single-variable differential calculus, the fundamental increment lemma is an immediate consequence of the definition of the derivative ''f''(''a'') of a function ''f'' at a point ''a'':
:f'(a) = \lim_ \frac.
The lemma asserts that the existence of this derivative implies the existence of a function \varphi such that
:\lim_ \varphi(h) = 0 \qquad \text \qquad f(a+h) = f(a) + f'(a)h + \varphi(h)h
for sufficiently small but non-zero ''h''. For a proof, it suffices to define
:\varphi(h) = \frac - f'(a)
and verify this \varphi meets the requirements.
== Differentiability in higher dimensions ==
In that the existence of \varphi uniquely characterises the number f'(a), the fundamental increment lemma can be said to characterise the differentiability of single-variable functions. For this reason, a generalisation of the lemma can be used in the definition of differentiability in multivariable calculus. In particular, suppose ''f'' maps some subset of \mathbb^n to \mathbb. Then ''f'' is said to be differentiable at a if there is a linear function
:M: \mathbb^n \to \mathbb
and a function
:\Phi: D \to \mathbb, \qquad D \subseteq \mathbb^n \smallsetminus \,
such that
:\lim_ \Phi(\bold) = 0 \qquad \text \qquad f(\bold+\bold) = f(\bold) + M(\bold) + \Phi(\bold) \cdot \Vert\bold\Vert
for non-zero h sufficiently close to 0. In this case, ''M'' is the unique derivative (or total derivative, to distinguish from the directional and partial derivatives) of ''f'' at a. Notably, ''M'' is given by the Jacobian matrix of ''f'' evaluated at a.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Fundamental increment lemma」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.